Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(4): 114074, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38625794

RESUMEN

Post-transcriptional mRNA regulation shapes gene expression, yet how cis-elements and mRNA translation interface to regulate mRNA stability is poorly understood. We find that the strength of translation initiation, upstream open reading frame (uORF) content, codon optimality, AU-rich elements, microRNA binding sites, and open reading frame (ORF) length function combinatorially to regulate mRNA stability. Machine-learning analysis identifies ORF length as the most important conserved feature regulating mRNA decay. We find that Upf1 binds poorly translated and untranslated ORFs, which are associated with a higher decay rate, including mRNAs with uORFs and those with exposed ORFs after stop codons. Our study emphasizes Upf1's converging role in surveilling mRNAs with exposed ORFs that are poorly translated, such as mRNAs with long ORFs, ORF-like 3' UTRs, and mRNAs containing uORFs. We propose that Upf1 regulation of poorly/untranslated ORFs provides a unifying mechanism of surveillance in regulating mRNA stability and homeostasis in an exon-junction complex (EJC)-independent nonsense-mediated decay (NMD) pathway that we term ORF-mediated decay (OMD).


Asunto(s)
ARN Helicasas , Estabilidad del ARN , Transactivadores , Humanos , Regiones no Traducidas 3'/genética , Degradación de ARNm Mediada por Codón sin Sentido , Sistemas de Lectura Abierta/genética , Biosíntesis de Proteínas , ARN Helicasas/metabolismo , ARN Helicasas/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Transactivadores/metabolismo , Transactivadores/genética , Células HEK293
2.
Dev Cell ; 54(6): 805-817.e7, 2020 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-32768421

RESUMEN

Early embryonic development is driven exclusively by maternal gene products deposited into the oocyte. Although critical in establishing early developmental programs, maternal gene functions have remained elusive due to a paucity of techniques for their systematic disruption and assessment. CRISPR-Cas13 systems have recently been employed to degrade RNA in yeast, plants, and mammalian cell lines. However, no systematic study of the potential of Cas13 has been carried out in an animal system. Here, we show that CRISPR-RfxCas13d (CasRx) is an effective and precise system to deplete specific mRNA transcripts in zebrafish embryos. We demonstrate that zygotically expressed and maternally provided transcripts are efficiently targeted, resulting in a 76% average decrease in transcript levels and recapitulation of well-known embryonic phenotypes. Moreover, we show that this system can be used in medaka, killifish, and mouse embryos. Altogether, our results demonstrate that CRISPR-RfxCas13d is an efficient knockdown platform to interrogate gene function in animal embryos.


Asunto(s)
Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica , Regulación del Desarrollo de la Expresión Génica/genética , Animales , Edición Génica/métodos , Células HEK293 , Humanos , Interferencia de ARN/fisiología , ARN Mensajero/genética
3.
Genome Res ; 29(7): 1100-1114, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31227602

RESUMEN

Posttranscriptional regulation plays a crucial role in shaping gene expression. During the maternal-to-zygotic transition (MZT), thousands of maternal transcripts are regulated. However, how different cis-elements and trans-factors are integrated to determine mRNA stability remains poorly understood. Here, we show that most transcripts are under combinatorial regulation by multiple decay pathways during zebrafish MZT. By using a massively parallel reporter assay, we identified cis-regulatory sequences in the 3' UTR, including U-rich motifs that are associated with increased mRNA stability. In contrast, miR-430 target sequences, UAUUUAUU AU-rich elements (ARE), CCUC, and CUGC elements emerged as destabilizing motifs, with miR-430 and AREs causing mRNA deadenylation upon genome activation. We identified trans-factors by profiling RNA-protein interactions and found that poly(U)-binding proteins are preferentially associated with 3' UTR sequences and stabilizing motifs. We show that this activity is antagonized by C-rich motifs and correlated with protein binding. Finally, we integrated these regulatory motifs into a machine learning model that predicts reporter mRNA stability in vivo.


Asunto(s)
Regiones no Traducidas 3' , Regulación del Desarrollo de la Expresión Génica , Estabilidad del ARN/genética , Proteínas de Unión al ARN/metabolismo , Secuencias de Aminoácidos , Animales , Sitios de Unión , Aprendizaje Automático , Modelos Genéticos , Secuencias Reguladoras de Ácido Ribonucleico , Pez Cebra/embriología , Pez Cebra/genética , Cigoto
4.
Nature ; 568(7751): 193-197, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30944477

RESUMEN

Genetic robustness, or the ability of an organism to maintain fitness in the presence of harmful mutations, can be achieved via protein feedback loops. Previous work has suggested that organisms may also respond to mutations by transcriptional adaptation, a process by which related gene(s) are upregulated independently of protein feedback loops. However, the prevalence of transcriptional adaptation and its underlying molecular mechanisms are unknown. Here, by analysing several models of transcriptional adaptation in zebrafish and mouse, we uncover a requirement for mutant mRNA degradation. Alleles that fail to transcribe the mutated gene do not exhibit transcriptional adaptation, and these alleles give rise to more severe phenotypes than alleles displaying mutant mRNA decay. Transcriptome analysis in alleles displaying mutant mRNA decay reveals the upregulation of a substantial proportion of the genes that exhibit sequence similarity with the mutated gene's mRNA, suggesting a sequence-dependent mechanism. These findings have implications for our understanding of disease-causing mutations, and will help in the design of mutant alleles with minimal transcriptional adaptation-derived compensation.


Asunto(s)
Adaptación Fisiológica/genética , Mutación , Estabilidad del ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transcripción Genética/genética , Regulación hacia Arriba/genética , Alelos , Animales , Epigénesis Genética/genética , Histonas/metabolismo , Ratones , Pez Cebra/genética
5.
Nat Struct Mol Biol ; 25(8): 677-686, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30061596

RESUMEN

RNA folding plays a crucial role in RNA function. However, knowledge of the global structure of the transcriptome is limited to cellular systems at steady state, thus hindering the understanding of RNA structure dynamics during biological transitions and how it influences gene function. Here, we characterized mRNA structure dynamics during zebrafish development. We observed that on a global level, translation guides structure rather than structure guiding translation. We detected a decrease in structure in translated regions and identified the ribosome as a major remodeler of RNA structure in vivo. In contrast, we found that 3' untranslated regions (UTRs) form highly folded structures in vivo, which can affect gene expression by modulating microRNA activity. Furthermore, dynamic 3'-UTR structures contain RNA-decay elements, such as the regulatory elements in nanog and ccna1, two genes encoding key maternal factors orchestrating the maternal-to-zygotic transition. These results reveal a central role of RNA structure dynamics in gene regulatory programs.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Conformación de Ácido Nucleico , ARN Mensajero/química , Regiones no Traducidas 3' , Animales , Biosíntesis de Proteínas , Estabilidad del ARN , ARN Mensajero/genética , Transcriptoma , Pez Cebra/embriología , Pez Cebra/genética
6.
Nat Methods ; 14(2): 201-207, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28024160

RESUMEN

Gene expression is extensively regulated at the levels of mRNA stability, localization and translation. However, decoding functional RNA-regulatory features remains a limitation to understanding post-transcriptional regulation in vivo. Here, we developed RNA-element selection assay (RESA), a method that selects RNA elements on the basis of their activity in vivo and uses high-throughput sequencing to provide a quantitative measurement of their regulatory functions at near-nucleotide resolution. We implemented RESA to identify sequence elements modulating mRNA stability during zebrafish embryogenesis. RESA provides a sensitive and quantitative measure of microRNA activity in vivo and also identifies novel regulatory sequences. To uncover specific sequence requirements within regulatory elements, we developed a bisulfite-mediated nucleotide-conversion strategy for large-scale mutational analysis (RESA-bisulfite). Finally, we used the versatile RESA platform to map candidate protein-RNA interactions in vivo (RESA-CLIP).


Asunto(s)
Técnicas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Mensajero , Secuencias Reguladoras de Ácidos Nucleicos , Regiones no Traducidas 3' , Animales , Embrión no Mamífero , Inmunoprecipitación , Estabilidad del ARN , ARN Mensajero/genética , Sulfitos , Pez Cebra/embriología
7.
Dev Biol ; 409(2): 442-50, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26658217

RESUMEN

MicroRNAs have emerged as critical regulators of gene expression. Originally shown to regulate developmental timing, microRNAs have since been implicated in a wide range of cellular functions including cell identity, migration and signaling. miRNA-430, the earliest expressed microRNA during zebrafish embryogenesis, is required to undergo morphogenesis and has previously been shown to regulate maternal mRNA clearance, Nodal signaling, and germ cell migration. The functions of miR-430 in brain morphogenesis, however, remain unclear. Herein we find that miR-430 instructs oriented cell divisions in the neural rod required for neural midline formation. Loss of miR-430 function results in mitotic spindle misorientation in the neural rod, failed neuroepithelial integration after cell division, and ectopic cell accumulation in the dorsal neural tube. We propose that miR-430, independently of canonical apicobasal and planar cell polarity (PCP) pathways, coordinates the stereotypical cell divisions that instruct neural tube morphogenesis.


Asunto(s)
División Celular/genética , MicroARNs/metabolismo , Tubo Neural/embriología , Pez Cebra/embriología , Pez Cebra/genética , Animales , Polaridad Celular , Embrión no Mamífero/citología , Embrión no Mamífero/metabolismo , Gastrulación , Regulación del Desarrollo de la Expresión Génica , MicroARNs/genética , Modelos Biológicos , Morfogénesis/genética , Tubo Neural/citología , Células Neuroepiteliales/citología , Células Neuroepiteliales/metabolismo , Ribonucleasa III/metabolismo , Huso Acromático/metabolismo , Células Madre/citología , Células Madre/metabolismo , Regulación hacia Arriba/genética
8.
Nature ; 503(7476): 360-4, 2013 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24056933

RESUMEN

After fertilization, maternal factors direct development and trigger zygotic genome activation (ZGA) at the maternal-to-zygotic transition (MZT). In zebrafish, ZGA is required for gastrulation and clearance of maternal messenger RNAs, which is in part regulated by the conserved microRNA miR-430. However, the factors that activate the zygotic program in vertebrates are unknown. Here we show that Nanog, Pou5f1 (also called Oct4) and SoxB1 regulate zygotic gene activation in zebrafish. We identified several hundred genes directly activated by maternal factors, constituting the first wave of zygotic transcription. Ribosome profiling revealed that nanog, sox19b and pou5f1 are the most highly translated transcription factors pre-MZT. Combined loss of these factors resulted in developmental arrest before gastrulation and a failure to activate >75% of zygotic genes, including miR-430. Our results demonstrate that maternal Nanog, Pou5f1 and SoxB1 are required to initiate the zygotic developmental program and induce clearance of the maternal program by activating miR-430 expression.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Factores de Transcripción SOXB1/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Cigoto/metabolismo , Animales , Reprogramación Celular/genética , Desarrollo Embrionario/genética , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/genética , MicroARNs/genética , Madres , Proteína Homeótica Nanog , Células Madre Pluripotentes/metabolismo , Ribosomas/genética , Transcriptoma/genética
9.
Semin Cell Dev Biol ; 21(7): 760-7, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20152922

RESUMEN

microRNAs (miRNAs) encode small RNA molecules of approximately 22nts in length that regulate the deadenylation, translation, and decay of their target mRNAs. The identification of miRNAs in plants and animals has uncovered a new layer of gene regulation with important implications for development, cellular homeostasis and disease. Because each miRNA is predicted to regulate several hundred genes, a major challenge in the field remains to elucidate the precise roles for each miRNA and to understand the physiological relevance of individual miRNA-target interactions in vivo. Despite the wide variety of biological contexts where miRNAs function, a common theme emerges, whereby miRNAs shape gene expression within both spatial and temporal dimensions by removing messages from previous cellular states as well as modulating the levels of actively transcribed genes. This review will focus on the role that the teleost Danio rerio (zebrafish) has played in shaping our understanding of miRNA function in vertebrates.


Asunto(s)
MicroARNs/metabolismo , Pez Cebra/metabolismo , Animales , Regulación de la Expresión Génica , Modelos Animales , Pez Cebra/embriología , Pez Cebra/genética
10.
Development ; 135(5): 963-71, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18234723

RESUMEN

The mechanisms by which the Wingless (Wg) morphogen modulates the activity of the transcriptional activator Armadillo (Arm) to elicit precise, concentration-dependent cellular responses remain uncertain. Arm is targeted for proteolysis by the Axin/Adenomatous polyposis coli (Apc1 and Apc2)/Zeste-white 3 destruction complex, and Wg-dependent inactivation of destruction complex activity is crucial to trigger Arm signaling. In the prevailing model for Wg transduction, only Axin levels limit destruction complex activity, whereas Apc is present in vast excess. To test this model, we reduced Apc activity to different degrees, and analyzed the effects on three concentration-dependent responses to Arm signaling that specify distinct retinal photoreceptor fates. We find that both Apc1 and Apc2 negatively regulate Arm activity in photoreceptors, but that the relative contribution of Apc1 is much greater than that of Apc2. Unexpectedly, a less than twofold reduction in total Apc activity, achieved by loss of Apc2, decreases the effective threshold at which Wg elicits a cellular response, thereby resulting in ectopic responses that are spatially restricted to regions with low Wg concentration. We conclude that Apc activity is not present in vast excess, but instead is near the minimal level required for accurate graded responses to the Wg morphogen.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/crecimiento & desarrollo , Proteínas Proto-Oncogénicas/genética , Proteínas Supresoras de Tumor/genética , Animales , Subunidad Apc1 del Ciclosoma-Complejo Promotor de la Anafase , Cruzamientos Genéticos , Drosophila/genética , Proteínas de Drosophila/deficiencia , Femenino , Masculino , Retina/fisiología , Proteínas Supresoras de Tumor/deficiencia , Proteína Wnt1
11.
Science ; 319(5861): 333-6, 2008 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-18202290

RESUMEN

The evolutionarily conserved Wnt/Wingless signal transduction pathway directs cell proliferation, cell fate, and cell death during development in metazoans and is inappropriately activated in several types of cancer. The majority of colorectal carcinomas contain truncating mutations in the adenomatous polyposis coli (APC) tumor suppressor, a negative regulator of Wnt/Wingless signaling. Here, we demonstrate that Drosophila Apc homologs also have an activating role in both physiological and ectopic Wingless signaling. The Apc amino terminus is important for its activating function, whereas the beta-catenin binding sites are dispensable. Apc likely promotes Wingless transduction through down-regulation of Axin, a negative regulator of Wingless signaling. Given the evolutionary conservation of APC in Wnt signal transduction, an activating role may also be present in vertebrates with relevance to development and cancer.


Asunto(s)
Proteínas del Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Apoptosis , Proteínas del Dominio Armadillo/metabolismo , Proteína Axina , Sitios de Unión , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , Regulación hacia Abajo , Drosophila/genética , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Genes de Insecto , Mutación , Células Fotorreceptoras de Invertebrados/citología , Factores de Transcripción/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo , Proteína Wnt1
12.
Mol Microbiol ; 58(1): 280-8, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16164565

RESUMEN

Classical conjugal DNA transfer of chromosomal DNA in bacteria requires the presence of a cis-acting site, oriT, in the chromosome. Acquisition of an oriT occurs if a conjugative plasmid integrates into the chromosome to form an Hfr donor strain, which can transfer extensive regions of chromosomal DNA. Because oriT sequences are unique, and because transfer occurs in a 5' to 3' direction, the frequency with which a particular gene is inherited by the recipient depends on the gene's location: those closest to the 3' side of oriT are transferred most efficiently. In addition, as the entire chromosome must be transferred to regenerate oriT, Hfr transconjugants never become donors. Here we describe novel aspects of a chromosomal DNA transfer system in Mycobacterium smegmatis. We demonstrate that there are multiple transfer initiations from a donor chromosome and, as a result, the inheritance of any gene is location-independent. Transfer is not contiguous; instead, multiple non-linked segments of DNA can be inherited in a recipient. However, we show that, with appropriate selection, segments of DNA at least 266 kb in length can be transferred. In further contrast to Hfr transfer, transconjugants can become donors, suggesting that the recipient chromosome contains multiple cis-acting sequences required for transfer, but lacks the trans-acting transfer functions. We exploit these observations to map a donor-determining locus in the M. smegmatis chromosome using genetic linkage analysis. Together, these studies further underline the unique nature of the M. smegmatis chromosomal transfer system.


Asunto(s)
Cromosomas Bacterianos , ADN Bacteriano/metabolismo , Transferencia de Gen Horizontal , Mycobacterium smegmatis/genética , Southern Blotting , Mapeo Cromosómico , Conjugación Genética , ADN Bacteriano/análisis , Genes Bacterianos , Ligamiento Genético
13.
Proc Natl Acad Sci U S A ; 101(17): 6536-41, 2004 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-15084738

RESUMEN

Accurately dating when the first bilaterally symmetrical animals arose is crucial to our understanding of early animal evolution. The earliest unequivocally bilaterian fossils are approximately 555 million years old. In contrast, molecular-clock analyses calibrated by using the fossil record of vertebrates estimate that vertebrates split from dipterans (Drosophila) approximately 900 million years ago (Ma). Nonetheless, comparative genomic analyses suggest that a significant rate difference exists between vertebrates and dipterans, because the percentage difference between the genomes of mosquito and fly is greater than between fish and mouse, even though the vertebrate divergence is almost twice that of the dipteran. Here we show that the dipteran rate of molecular evolution is similar to other invertebrate taxa (echinoderms and bivalve molluscs) but not to vertebrates, which significantly decreased their rate of molecular evolution with respect to invertebrates. Using a data set consisting of the concatenation of seven different amino acid sequences from 23 ingroup taxa (giving a total of 11 different invertebrate calibration points scattered throughout the bilaterian tree and across the Phanerozoic), we estimate that the last common ancestor of bilaterians arose somewhere between 573 and 656 Ma, depending on the value assigned to the parameter scaling molecular substitution rate heterogeneity. These results are in accord with the known fossil record and support the view that the Cambrian explosion reflects, in part, the diversification of bilaterian phyla.


Asunto(s)
Evolución Biológica , Animales , Heterogeneidad Genética , Datos de Secuencia Molecular , Filogenia , ARN/genética
14.
Dev Biol ; 269(1): 152-64, 2004 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-15081364

RESUMEN

We have identified an NK2 family homeodomain transcription factor, SpNK2.1, in the sea urchin Strongylocentrotus purpuratus whose transcripts are initially detected within the apical plate ectoderm of the hatching blastula and are confined to the apical organ at least through 2 weeks of development. Protein localization studies demonstrate that SpNK2.1 is restricted to the apical plate epithelium, but is excluded from the nucleus of serotonergic neurons. The expression profile of SpNK2.1 is dictated via two separate regulatory systems. Initially, SpNK2.1 is restricted to the apical pole domain by beta-catenin-dependent processes operating along the animal-vegetal axis, as evidenced by an expansion of SpNK2.1 expression upon cadherin overexpression. Starting at gastrulation, expression in the apical plate is maintained by SpDri, the sea urchin orthologue of dead ringer. Abrogation of SpDri results in the downregulation of SpNK2.1 after gastrulation, but SpDri is not necessary for the initial activation of SpNK2.1. Loss of function experiments using SpNK2.1-specific morpholino antisense oligonucleotides and SpNK2.1 overexpression experiments do not disrupt embryonic development and have no effect upon the development of neuronal components of the apical organ. Nonetheless, SpNK2.1 defines a new early territory of the sea urchin embryo.


Asunto(s)
Tipificación del Cuerpo/genética , Ectodermo/metabolismo , Proteínas de Homeodominio/genética , Erizos de Mar/embriología , Animales , Tipificación del Cuerpo/fisiología , Proteínas de Homeodominio/metabolismo , Erizos de Mar/metabolismo
15.
Evol Dev ; 4(6): 405-17, 2002.
Artículo en Inglés | MEDLINE | ID: mdl-12492141

RESUMEN

Recent phylogenetic investigations have confirmed that hemichordates and echinoderms are sister taxa. However, hemichordates share several cardinal characterstics with chordates and are thus an important taxon for testing hypotheses of homology between key chordate characters and their putative hemichordate antecedents. The chordate dorsal nervous system (DNS) and endostyle are intriguing characters because both hemichordate larval and adult structures have been hypothesized as homologues. This study attempts to test these purported homologies through examination of the expression pattem of a Ptychodera flava NK2 gene, PfNK2.1, because this gene is expressed both in the DNS and endostyle/thyroid in a wide range of chordate taxa. We found that PfNK2.1 is expressed in both neuronal and pharyngeal structures, but its expression pattem is broken up into distinct embryonic and juvenile phases. During embryogenesis, PfNK2.1 is expressed in the apical ectoderm, with transcripts later detected in presumable neuronal structures, including the apical organ and ciliated feeding band. In the developing juvenile we detected PfNK2.1 signal throughout the pharynx, including the stomochord, and later in the hindgut. We conclude that the similar utilization of NK2.1 in apical organ development and chordate DNS is probably due to a more general role for NK2.1 in neurogenesis and that hemichordates do not possess a homologue of the chordate DNS. In addition, we conclude that P. flava most likely does not possess a true endostyle; rather during the evolution of the endostyle NK2.1 was recruited from its more general role in pharynx development.


Asunto(s)
Invertebrados/genética , Proteínas Nucleares/genética , Factores de Transcripción/genética , Secuencia de Aminoácidos , Animales , Southern Blotting , Cordados no Vertebrados/embriología , Cordados no Vertebrados/genética , Cordados no Vertebrados/metabolismo , Invertebrados/embriología , Invertebrados/metabolismo , Datos de Secuencia Molecular , Sistema Nervioso/embriología , Sistema Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Faringe/embriología , Faringe/metabolismo , Filogenia , Alineación de Secuencia , Glándula Tiroides/embriología , Glándula Tiroides/metabolismo , Factor Nuclear Tiroideo 1 , Factores de Transcripción/metabolismo , Vertebrados/embriología , Vertebrados/genética , Vertebrados/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...